

Constrained optimization with second order conditions

Find whether the conditional extremes of the following function exist:

$$f(x, y) = 3x^2 + y^2 - x + 1 \text{ Subject to: } x^2 + \frac{y^2}{4} = 1$$

Solution

We build the Lagrangian:

$$\begin{aligned} L &= 3x^2 + y^2 - x + 1 + \lambda(1 - x^2 - y^2/4) \\ L'x &= 6x - 1 - 2x\lambda = 0 \\ L'y &= 2y - \lambda y/2 = 0 \\ L'\lambda &= 1 - x^2 - y^2/4 = 0 \end{aligned}$$

From the first two conditions.

$$\begin{aligned} x(6 - 2\lambda) &= 1 \\ 4y &= \lambda y \end{aligned}$$

The second equation can be satisfied if $y = 0$. We use this in the third equation:

$$\begin{aligned} 1 - x^2 - 0 &= 0 \\ x^2 &= 1 \end{aligned}$$

Which is satisfied with $x = 1$ and $x = -1$. Therefore we have 2 possible critical points: $(1, 0)$, $(-1, 0)$. Now let's go for the other case where we assume that $y \neq 0$ and we can work with the second equation to find the value of λ :

$$4 = \lambda$$

This gives us the following value of x

$$\begin{aligned} 6x - 1 - 2x4 &= 0 \\ -2x &= 1 \\ x &= -1/2 \end{aligned}$$

Going to the third equation:

$$\begin{aligned} 1 - (-1/2)^2 - y^2/4 &= 0 \\ 1 - 1/4 - y^2/4 &= 0 \\ 3 &= y^2 \end{aligned}$$

Which tells us that $y = \sqrt{3}$ or $y = -\sqrt{3}$. With this we have two more possible extremes: $(-1/2, \sqrt{3})$ and $(-1/2, -\sqrt{3})$. We calculate the second derivatives to evaluate the second order condition:

$$\begin{aligned} f''_{xx} &= 6 - 2\lambda \\ f''_{yy} &= 2 - \lambda/2 \\ f''_{xy} &= f''_{yx} = 0 \end{aligned}$$

We also have the derivatives of the constraint:

$$\begin{aligned} g'x &= 2x \\ g'y &= y/2 \end{aligned}$$

This generates the following bordered Hessian:

$$\bar{H} = \begin{pmatrix} 0 & g'x & g'y \\ g'x & L''_{xx} & L''_{xy} \\ g'y & L''_{yx} & L''_{yy} \end{pmatrix} = \begin{pmatrix} 0 & 2x & y/2 \\ 2x & 6 - 2\lambda & 0 \\ y/2 & 0 & 2 - \lambda/2 \end{pmatrix}$$

We calculate the determinant:

$$-2x \begin{vmatrix} 2x & y/2 \\ 0 & 2 - \lambda/2 \end{vmatrix} + y/2 \begin{vmatrix} 2x & y/2 \\ 6 - 2\lambda & 0 \end{vmatrix}$$

$$-2x[2x(2 - \lambda/2)] + y/2[-(6 - 2\lambda)y/2] = -2x[4x - x\lambda] + y/2[-3y + y\lambda] = -8x^2 + 2x^2\lambda - y^2\frac{3}{2} + y^2\lambda/2$$

Simplifying:

$$|\bar{H}| = x^2(-8 + 2\lambda) + \frac{y^2}{2}(-3 + \lambda)$$

This we have to evaluate at the following points (and calculating the value of λ for each one):

- $(1, 0)$ and $\lambda = 5/2$
- $(-1, 0)$ and $\lambda = 7/2$
- $(-1/2, \sqrt{3})$ and $\lambda = 4$
- $(-1/2, -\sqrt{3})$ and $\lambda = 4$

We evaluate the 4 cases:

•

$$-8 + 5 = -3 < 0$$

We are in front of a minimum.

•

$$-8 + 7 = -1 < 0$$

We are in front of a minimum.

•

$$\frac{1}{16}(-8 + 2*4) + \frac{3}{2}(-3 + 4) = 3/2 > 0$$

We are in front of a maximum.

•

$$\frac{1}{16}(-8 + 2*4) + \frac{3}{2}(-3 + 4) = 3/2 > 0$$

We are in front of a maximum.